This material is based upon work supported under a US National Science Foundation Graduate Fellowship to NEB and is part of a continuing program in crystal chemistry supported by the NSF (DMR 8813524). We have benefited from the use of facilities at the Manuel Lujan, Jr Neutron Scattering Center, a national user facility, funded as such, by the DOE/Office of Basic Energy Sciences. The synthesis work at Cornell is supported by the Office of Naval Research.

References

Armytage, D. \& Fender, B. E. F. (1974). Acta Cryst. B30, 809-812.
Åsbrink, S. \& Magnéli, A. (1959). Acta Cryst. 12, 575-581.
Badding, M. E. \& DiSalvo, F. J. (1990). Inorg. Chem. 29, 3952-3954.
Brauer, G. \& Mohr-Rosenbaum, E. (1971). Monatsh. Chem. 102, 1311-1316.
Brauer, G. \& Weidlein, J. R. (1965). Angew. Chem. Int. Ed. Engl. 4, 241-242.
Brauer, G., Weidlein, J. \& Strähle, J. (1966). Z. Anorg. Allg. Chem. 348, 298-308.
Brauer, G. \& Zapp, K. H. (1953). Naturwissenschaften, 40, 604.
Brauer, G. \& Zapp, K. H. (1954). Z. Anorg. Allg. Chem. 277, 129-139.
Brown, B. E. (1966). Acta Cryst. 20, 264-267.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Christensen, A. N. \& Lebech, B. (1978). Acta Cryst. B34, 261-263.
Conroy, L. E. \& Christensen, A. N. (1977). J. Solid State Chem. 20, 205-207.

Fontbonne, A. \& Gilles, J. (1969). Rev. Int. Hautes Temp. Refract. 6, 181-192.
Gatterer, J., Dufek, G., Ettmayer, P. \& Kieffer, R. (1975). Monatsh. Chem. 106, 1137-1147.
Hewat, A. W. (1979). Acta Cryst. A35, 248.
Jacobs, H. \& Pinkowski, E. V. (1989). J. Less-Common Met. 146, 147-160.
Jellinek, F. (1962). J. Less-Common Met. 4, 9-15.
Larson, A. C. \& Von Dreele, R. B. (1990). Generalized Structure Analysis System (GSAS). LANSCE, MS-H805, Manuel Lujan, Jr Neutron Scattering Center, Los Alamos, NM 87545, USA.
Moureu, H. \& Hamblet, C. H. (1937). J. Am. Chem. Soc. 59, 33-40.
Mueller, M. H. (1977). Scr. Metall. 11, 693.
Müller, U. (1979). Acta Cryst. B35, 2502-2509.
O'Keeffe, M. \& Brese, N. E. (1991). J. Am. Chem. Soc. 113, 3226-3229.
Rauch, P. \& DiSalvo, F. (1991). Inorg. Synth. To be published.
Rouse, K. D., Cooper, M. J. \& Chakera, A. (1970). Acta Cryst. A26, 582-691.
Schönberg, N. (1954a). Acta Chem. Scand. 8, 213-222.
Schönberg, N. (1954b). Acta Chem. Scand. 8, 199-203.
Serafin, M. \& Hoppe, R. (1980). Z. Anorg. Allg. Chem. 464, 240-254.
Strähle, J. (1973). Z. Anorg. Allg. Chem. 402, 47-57.
Terao, N. (1971). Jpn J. Appl. Phys. 10, 248-259.
Terao, N. (1977). C. R. Acad. Sci. Sér. C, 285, 17-20.
Tosi, M. P. (1964). Solid State Phys. 16, 1-120.
Von Dreele, R. B., Jorgensen, J. D. \& Windsor, C. G. (1982). J. Appl. Cryst. 15, 581-589.

Weishaupt, M. \& Strähle, J. (1977). Z. Anorg. Allg. Chem. 429, 261-269.
Zaslavskij, A. I. \& Zvincuk, R. A. (1953). Dokl. Akad. Nauk SSSR, 90, 781-783.

Acta Cryst. (1991). C47, 2294-2297

Structure of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$

By A. Moqine and Ali Boukhari*
Laboratoire de Chimie du Solide Appliquée, Département de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco

and Elizabeth M. Holt*
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

(Received 8 June 1990; accepted 11 April 1991)

Abstract

Barium copper pyrophosphate, $M_{r}=374 \cdot 8$, triclinic, $\quad P \overline{1}, \quad a=7.353(2), \quad b=7.578$ (2),$\quad c=$ 5.231 (1) $\AA, \quad \alpha=90.83$ (2),$\quad \beta=95.58$ (2),$\quad \gamma=$ $103.00(2)^{\circ}, \quad V=282.5(1) \AA^{3}, \quad Z=2, \quad D_{x}=$ $4.41 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \quad \mu=$ $112.5 \mathrm{~cm}^{-1}, F(000)=342, T=298 \mathrm{~K}, R=3.4 \%$ for 1207 observed reflections. The structure of

[^0]$\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ is isostructural with that of $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$. Both show planes of $\left[\left(M \mathrm{P}_{2} \mathrm{O}_{7}^{2-}\right)_{2}\right]_{\infty}, M=\mathrm{Cu}, \mathrm{Co}$, composed of mixed $M \mathrm{O}_{5}$ and PO_{4} polyhedra and square-pyramidal coordination for M, linked together by interplanar Ba atoms.

Introduction. Two types of structures are found for solid-state diphosphates, $A_{2} \mathrm{P}_{2} \mathrm{O}_{7} \quad(A=$ bivalent cation): thortveitite and dichromate (Cruickshank,

Lynton \& Barclay, 1962; Brown \& Calvo, 1970). The anionic groups, $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$, are found in staggered conformation in thortveitite structures and eclipsed in dichromates.

For mixed diphosphates, $A M \mathrm{P}_{2} \mathrm{O}_{7}(A=$ alkalineearth cation, $M=$ transition metal), only the compounds $\mathrm{BaCoP}_{2} \mathrm{O}_{7}, \mathrm{BaNiP}_{2} \mathrm{O}_{7}$ and $\mathrm{CaCoP}_{2} \mathrm{O}_{7}$ have been examined by single-crystal X-ray analysis (Riou, Labbe \& Goreaud, 1988a,b). $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$ and $\mathrm{CaCoP}_{2} \mathrm{O}_{7}$ crystallize in a triclinic unit cell. $\mathrm{BaNiP}_{2} \mathrm{O}_{7}$ was found to be an incommensurate structure. $\mathrm{SrMgP}_{2} \mathrm{O}_{7}, \mathrm{SrCuP}_{2} \mathrm{O}_{7}$ and $\mathrm{CaCuP}_{2} \mathrm{O}_{7}$ (Calvo, 1968; Boukhari, Moqine \& Flandrois, 1991) have been identified as isomorphous with $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. For these structures, the unit cell is monoclinic and the space group is $P 2_{1} / n$.

In a recent publication (Boukhari, Moqine \& Flandrois, 1991) we have noted the resemblance of the powder pattern of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ to those of $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$ and $\mathrm{BaNiP}_{2} \mathrm{O}_{7}$. This would suggest that $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$, like $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$, crystallizes with dimers, $\left(M \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$, in which metal atoms are bridged in pairs by two O atoms. However, magnetic measurements on powder samples of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ show no maximum on the $\chi_{M}=f(T)$ curve, and thus suggest that the solid-state structure of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ may differ from the dimeric grouping seen in $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$. We have thus undertaken the single-crystal structural analysis of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ in an effort to interpret the ferromagnetism observed for the powder.

Experimental. Single crystals of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ have been prepared by fusion in the presence of a $3: 1$ molar excess of $\mathrm{P}_{2} \mathrm{O}_{5}$. A mixture of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, \mathrm{BaCO}_{3}$ and CuO (of high purity) was heated slowly to liquidity at 1323 K . This product was then cooled slowly ($10 \mathrm{~K} \mathrm{~h}^{-1}$) to 1073 K . Below this temperature, the oven was turned off and cooling allowed to continue. The resulting product was placed in a 0.1 M solution of HCl for approximately 4 h to facilitate dissolution of the amorphous material, leaving well formed crystals in the form of narrow plates.

A crystal of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ (dimensions $0.15 \times 0.2 \times$ 0.2 mm) was mounted on a Syntex P3 automated diffractometer. Unit-cell dimensions were determined by least-squares refinement of the best angular positions for 15 independent reflections ($2 \theta>29^{\circ}$) during normal alignment procedures. Data (1658 independent points after removal of redundant data) were collected at room temperature using a variable scan rate, a $\theta-2 \theta$ scan mode and a scan width of $1 \cdot 2^{\circ}$ below $K \alpha_{1}$ and $1 \cdot 2^{\circ}$ above $K \alpha_{2}$ to a maximum 2θ value of 60°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections.

As the intensities of these reflections showed less than 5% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization and background effects using the reflection profile peak analysis program, DREAM (Blessing, 1986). Equivalent reflections were averaged and showed a variance of 3%. An empirical absorption correction was applied using the data from ψ scans of 21 independent reflections with χ angles between 70 and 110°. Observed reflections [1207 with $F>3 \cdot 0 \sigma(F)$] were used for solution and refinement of the structure. Dircet methods (MULTAN; Main et al., 1980) permitted location of the heavy-atom positions. A cycle of least-squares refinement followed by a difference Fourier synthesis allowed location of the $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ groups. Refinement (XRAY; Stewart, 1978) of scale factor, positional and isotropic thermal parameters was carried out to convergence. Final cycles of least-squares refinement were completed with anisotropic thermal parameters [function minimized, $\Sigma\left[\left(F_{o}-\left|F_{c}\right|\right)^{2}\right]$ leading to a final agreement factor $R=3 \cdot 4 \%$. Scattering factors were taken from Cromer \& Mann (1968). Anomalous-dispersion corrections were made for Ba and Cu (International Tables for X-ray Crystallography, 1974, Vol. IV). In the final stages of refinement a weight of $1 / \sigma(F)^{2}$ was used ($w R=4 \cdot 1 \%$).

Discussion. A projection view of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ is shown in Fig. 1, based on the positional parameters of Table 1. Bond distances and angles are listed in Table 2.*

The structure is characterized by isolated layers composed of mixed polyhedra: CuO_{5} and PO_{4} (Fig.

[^1]

Fig. 1. View of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ showing a projection of Cu dimer succession in the \mathbf{c} direction.

Table 1. Positional parameters for $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$

$U_{\mathrm{cq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$U_{\mathrm{cq}}\left(\AA^{2}\right)$
	x	$0.0736(1)$	$-0.2023(1)$	$10.0(1)$
$\mathrm{Ba1}$	$-0.7759(1)$	$-0.8152(2)$	$6.7(2)$	
Cu 1	$-0.3582(2)$	$0.4010(1)$	$-0.6954(4)$	$4.3(5)$
P 1	$-0.7327(3)$	$0.7849(2)$	$-0.7117(4)$	$4.8(4)$
P 2	$-0.8130(3)$	$0.4029(3)$	$-0.4367(12)$	$10.3(1)$
O 11	$-0.6153(10)$	$0.7901(9)$	$-0.7097(12)$	$8.4(1)$
O12	$-0.8433(9)$	$0.9286(8)$	$-0.9186(11)$	$5.6(1)$
O13	$-0.6108(8)$	$0.7956(8)$	$-0.7308(12)$	$7.9(1)$
O14	$-0.8794(9)$	$0.5921(8)$	$-0.4394(12)$	$8.2(1)$
O21	$-0.7177(9)$	$0.4009(8)$	$-0.7742(13)$	$12.3(1)$
O22	$-0.9802(10)$	$0.2527(9)$	$-0.9123(12)$	$8.5(1)$
O23	$-0.6724(9)$	$0.4117(8)$		

Table 2. Bond distances (\AA) angles $\left({ }^{\circ}\right)$ for $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$

Cul-O11 ${ }^{\text {i }}$	1.962 (7)	$\mathrm{Ol1}-\mathrm{Cul}-\mathrm{O} 13^{\text {ii }}$	86.6 (3)
$\mathrm{Cu}-\mathrm{Ol} 3^{\text {ii }}$	1.983 (6)	$\mathrm{O} 11^{\text {i}}-\mathrm{Cul}-\mathrm{O} 21^{\text {i }}$	94.9 (3)
$\mathrm{Cul}-\mathrm{O} 21^{\text {i }}$	1.939 (6)	$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Cul}-\mathrm{O} 23$	$100 \cdot 2$ (2)
$\mathrm{Cul}-\mathrm{O} 23$	2.337 (7)	$\mathrm{Ol1}-\mathrm{Cul}-\mathrm{O} 23{ }^{\text {ii }}$	177.0 (3)
Cul -O23 ${ }^{\text {ii }}$	2.019 (6)	$\mathrm{O} 13^{\mathrm{ii}}$ - $\mathrm{Cu}-\mathrm{O} 21^{\mathrm{i}}$	$170 \cdot 2$ (3)
$\mathrm{Ba}-\mathrm{O} 21$	2.754 (6)	$\mathrm{O} 13^{\mathrm{ii}}-\mathrm{Cul}-\mathrm{O} 23$	89.8 (2)
$\mathrm{Bal}-\mathrm{Ol} 3^{\text {i }}$	2.798 (6)	$\mathrm{O} 13{ }^{\text {iii- }} \mathrm{Cul}-\mathrm{O} 23^{\text {ii }}$.	$90 \cdot 5$ (2)
$\mathrm{Ba} 1-\mathrm{Ol2} 2^{\text {iii }}$	2.790 (5)	$\mathrm{O} 21-\mathrm{Cu}-\mathrm{O} 23$	99.4 (3)
$\mathrm{Bal}-\mathrm{Ol2} 2^{\text {iv }}$	2.813 (6)	$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Cul}-\mathrm{O} 23^{\mathrm{ii}}$	87.7 (2)
$\mathrm{Bal-Ol1}{ }^{\text {iv }}$	2.977 (6)	$\mathrm{O} 23-\mathrm{Cul}-\mathrm{O} 23{ }^{\text {ii }}$	80.8 (2)
$\mathrm{Ba} 1-\mathrm{O} 23^{\circ}$	2.868 (7)	$\mathrm{O} 11-\mathrm{Pl}-\mathrm{O} 12$	112.4 (4)
$\mathrm{Bal}-\mathrm{Ol} 3^{\text {vi }}$	3.001 (5)	$\mathrm{O} 11-\mathrm{Pl}-\mathrm{O} 13$	111.2 (4)
$\mathrm{Ba} 1-\mathrm{O} 222^{\text {vii }}$	$2 \cdot 702$ (6)	O11-P1-O14	108.0 (3)
$\mathrm{Bal}-\mathrm{O} 22^{\text {- }}$	$3 \cdot 236$ (6)	O12-Pl-O13	111.1 (4)
$\mathrm{Bal}-\mathrm{O} 2^{\text {vi }}$	$2 \cdot 860$ (5)	O12-Pl-O14	$107 \cdot 5$ (4)
$\mathrm{Pl}-\mathrm{Ol1}$	1.528 (7)	O13-P1-O14	$106 \cdot 2$ (4)
$\mathrm{Pl}-\mathrm{O} 12$	1.498 (7)	$\mathrm{P} 1-\mathrm{O} 14-\mathrm{P} 2$	$122 \cdot 1$ (4)
$\mathrm{Pl}-\mathrm{Ol} 3$	1.532 (7)	O14-P2-O21	$106 \cdot 2$ (3)
$\mathrm{Pl}-\mathrm{Ol4}$	1.605 (6)	O14-P2-O22	108.2 (4)
P2-O14	1.617 (7)	O14-P4-O23	$105 \cdot 2$ (4)
P2-021	1.527 (6)	O21-P2-O22	113.9 (4)
$\mathrm{P} 2-\mathrm{O} 22$	1.482 (6)	O21-P2-O23	111.3 (4)
$\mathrm{P} 2-\mathrm{O} 23$	1.535 (7)	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 23$	111.4 (4)

Symmetry codes: (i) $-1-x, 1-y,-1-z$; (ii) $-1-x, 1-y$, $-2-z$; (iii) $-2-x, 1-y,-1-z$; (iv) $x,-1+y, z$; (v) $x, y, 1+z$; (vi) $x,-1+y, 1+z$; (vii) $-2-x,-y,-1-z$.
1). These layers are approximately parallel to the (010) of the triclinic cell. Adjacent layers are linked by interactions with Ba^{2+} ions. Within the layers, PO_{4}^{3-} tetrahedra share a corner forming diphosphates, $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$. These anions are grouped in pairs related by a center of inversion and with bridging O atoms extending towards each other. Repetition of this motif follows the c axis of the cell (Fig. 2).
Cu^{2+} atoms bridge two successive $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ groups, being linked to O atoms of each of the two P atoms of two successive groups. These four linkages form the square of the square-pyramidal Cu coordination [$\mathrm{Cu}-\mathrm{O}$ average 1.976 (6) \AA]. Cu atoms linked in this manner thus form chains, $\left(\mathrm{CuP}_{2} \mathrm{O}_{7}^{2-}\right)_{\infty}$ extending in the \mathbf{c} direction. Two adjacent chains are related by centres of inversion which relate $\left[\left(\mathrm{CuP}_{2} \mathrm{O}_{7}^{2-}\right)_{2}\right]_{\infty}$ units of each polymeric chain. The same motif is found in the low-temperature form of $\mathrm{Na}_{2} \mathrm{CuP}_{2} \mathrm{O}_{7}$ (Erragh, Boukhari, Abraham \& Elouadi, 1991). Cu coordination is completed by a fifth linkage to an O atom of
an adjacent chain (Table 2), $\mathrm{Cu}-\mathrm{O} 23$ [2.337 (7) \AA]. The O22 atom at 3.214 (6) \AA represents a potential sixth coordination site. This distance is too long to be considered interactive. Elongation of the apical bond is consistent with the presence of two electrons in the $d_{z^{2}}$ orbital for $\mathrm{Cu}^{2+}\left(d^{9}\right)$ (Goodenough, 1966). Similar square-pyramidal environments have been observed for Cu^{2+} in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Robertson \& Calvo, 1967; Shoemaker, Anderson \& Kostiner, 1977).

Fig. 2. (a) Projection view of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ on the (100) plane, showing Cu coordination in adjacent unit cells. (b) Projection view of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ showing the chains $\left(\mathrm{CuP}_{2} \mathrm{O}_{7}\right)^{2-}$ and the formation of $\mathrm{Cu}_{2} \mathrm{O}_{2}$ dimers. The broken line (\cdots) indicates a sixth atom $[\mathrm{O} 22(-1+x, y, z)]$ at an extended distance from Cu .
$\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ is found in eclipsed conformation; $\mathrm{P}-\mathrm{O}$ distances range from 1.482 (6) to 1.617 (7) \AA with $\mathrm{P}-\mathrm{O}_{\text {terminal }}$ distances averaging $1 \cdot 517$ (6) \AA and P $\mathrm{O}_{\text {bridging }}$ distances longer [average 1.611 (6) \AA] The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle is $122 \cdot 1(4)^{\circ}$. These distances are comparable to the values seen for other similar groups. $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ thus belongs to the family of dichromate structures in which $\mathrm{P}_{2} \mathrm{O}_{7}$ shows an eclipsed conformation and $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ ions appear in groups of two with bridging O atoms directed towards each other.
Ba^{2+} ions show ninefold coordination with $\mathrm{Ba}-\mathrm{O}$ distances between 2.702 (6) and 3.001 (5) \AA [average $2 \cdot 840$ (6) \AA]. These distances are similar to those observed for Ba in $\mathrm{BaCoP}_{2} \mathrm{O}_{7}(2 \cdot 70-2 \cdot 97 \AA$). In $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Hagman, Jansson \& Magnéli, 1968), isostructural with $\alpha-\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Morris, McMurdie, Evans, Paretzkin, DeGroot, Hubbard \& Carmel, 1979), Sr^{2+} shows ninefold coordination. Thus the structures of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ and $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$ are isostructural. Both display dimers of $M \mathrm{P}_{2} \mathrm{O}_{7}^{2-}$ in which pairs of metal atoms are bridged by two O atoms. The solid-state structure of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$, thus, does not lead to a complete interpretation of its lowtemperature magnetic behavior.

The authors express their gratitude to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation.

References

Blessing, R. H. (1986). Crystallogr. Rev. 1, 3-58.
Boukhari, A., Moqine, A. \& Flandrois, S. (1991). J. Solid State Chem. To be published.
Brown, I. D. \& Calvo, C. (1970). J. Solid State Chem. 1, 173-179.
Calvo, C. (1968). J. Electrochem. Soc. 115(10), 1095-1096.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Cruickshank, D. W. J., Lynton, H. \& Barclay, G. A. (1962). Acta Cryst. 15, 491-498.
Erragh, F., Boukhari, A., Abraham, F. \& Elouadi, B. (1991). J. Cryst. Spectros. Res. To be published.

Goodenough, J. B. (1966). Magnetism and the Chemical Bond, 2nd ed. New York: Interscience.
Hagman, L.-O., Jansson, I. \& Magnéli, C. (1968). Acta Chem. Scand. 22, 1419-1429.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerco, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Morris, M. C., McMurdie, H. F., Evans, E. H., Paretzkin, B., DeGroot, J. H., Hubbard, C. R. \& Carmel, S. J. (1979). Editors. Natl Bur. Stand. US Monogr. 25, 16, 26.
Riou, D., Labbe, P. \& Goreaud, M. (1988a). C. R. Acad. Sci. Sér. C, 307, 903-907.
Riou, D., Labbe, P. \& Goreaud, M. (1988b). C. R. Acad. Sci. Sér. C, 307, 1751-1756.
Robertson, B. E. \& Calvo, C. (1967). Acta Cryst. 22, 665-672.
Shoemaker, G. L., Anderson, J. B. \& Kostiner, E. (1977). Acta Cryst. B33, 2969-2972.
Stewart, J. M. (1978). The XRAY76 system. Version of 1978. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1991). C47, 2297-2299

$\left.\operatorname{CsSbO}\left(\mathrm{SiO}_{3}\right)_{2}: \mathrm{A} \mathrm{New}\left\{u B, 1{ }_{\infty}{ }^{1}\right\} \mid{ }^{12} \mathrm{SiO}_{3}\right]$ Chain Silicate

By C. Pagnoux, A. Verbaere, Y. Piffard* and M. Tournoux
Laboratoire de Chimie des solides, UMR 110-CNRS, Université de Nantes, 2, rue de la houssinière, 44072 Nantes CEDEX 03, France

(Received 30 March 1991; accepted 27 June 1991)

Abstract. $\mathrm{CsSbO}\left(\mathrm{SiO}_{3}\right)_{2}, M_{r}=422.82$, orthorhombic,
Pna $2_{1}, \quad a=21.024(2), \quad b=13.602(2), \quad c=$ 7.1287 (7) $\AA, \quad V=2038.6(7) \AA^{3}, \quad Z=12, \quad D_{x}=$ $4.131 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $9.66 \mathrm{~mm}^{-1}, \quad F(000)=2280, \quad T=293 \mathrm{~K}, \quad R=0.044$, $w R=0.047$ for 2576 independent reflections. The structure consists of chains of corner-sharing SbO_{6} octahedra, running parallel to the c axis and crosslinked to chains of corner-sharing SiO_{4} tetrahedra running parallel to the a axis. This covalent framework delimits tunnels which extend through the structure parallel to the a axis and wherein Cs

[^2]0108-2701/91/112297-03\$03.00
atoms are situated. The overall silicate anion topology is $\left\{u B, 1{ }_{\infty}{ }^{1}\right\}\left[{ }^{12} \mathrm{SiO}_{3}\right]$.

Introduction. As part of a search for layered or skeleton structures with covalent networks built up from $M \mathrm{O}_{6}$ octahedra (M : high valent cation) and $X \mathrm{O}_{4}$ tetrahedra ($X=\mathrm{P}, \mathrm{Si}, \mathrm{Ge}$) the first alkali antimony (V) silicates $\mathrm{KSbOSiO}_{4}$ (Crosnier, Guyomard, Verbaere \& Piffard, 1990) and $\mathrm{NaSbOSiO}_{4}$ (Pagnoux, Guyomard, Verbaere, Piffard \& Tournoux, 1991), which are both isomorphous derivatives of KTiOPO_{4}, have recently been characterized. This paper reports the crystal structure determination of a monopolysilicate isolated during the

[^0]: * Authors to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisolropic thermal parameters and bond angles at the Ba atom have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54156 (20 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

